A High-Order Infective Countermeasure Framework

G. Barbu, L. Bettale, <u>L. Castelnovi</u>, T. Chabrier, N. Debande, C. Giraud and N. Reboud

Faults are a serious threat in cryptographic implementations.

Attacker's goal: getting an erroneous output that leaks the secret key.

Dealing with **block ciphers**, two strategies in state of the art to avoid it:

- Detection
- Infection

Introduction

Detection

Principle

The algorithm is run twice and the outputs are compared.

If different, an appropriate measure is taken (for instance, no output).

Principle

The algorithm is run twice and the outputs are compared.

If different, an appropriate measure is taken (for instance, no output).

But...

Comparison can be corrupted by an extra fault.

Infection

Introduction

Principle

The algorithm's output is corrupted by an amplified error.

No need for comparison and non-informative output.

But...

How to amplify the error in practice?

Infection today

■ External infection

■ External infection

■ Internal infection

External infection

· Internal infection

Almost all propositions up to now are broken.

External infection

• Internal infection

Almost all propositions up to now are broken.

Either because of:

- \blacksquare A deterministic \mathcal{D} ,
- \blacksquare Or an invertible \mathcal{D} ,
- lacksquare Or a low-diffusion \mathcal{D} .

· External infection

Internal infection

In a secure scheme, \mathcal{D} should be:

- √ Non-deterministic
- ✓ And non-invertible
- ✓ And with high-diffusion capacity

External infection

· Internal infection

In a secure scheme, \mathcal{D} should be:

- √ Non-deterministic
- ✓ And non-invertible
- ✓ And with high-diffusion capacity

Hard to find such $\mathcal D$ with the constraint $\mathcal D(\mathsf O)=\mathsf O$

Principle of our framework

External infection but the infective value is $\Delta \mathcal{D}(E_K)$ instead of $\mathcal{D}(\Delta E_K)$

Principle of our framework

External infection but the infective value is $\Delta \mathcal{D}(E_K)$ instead of $\mathcal{D}(\Delta E_K)$

- Constraint $\mathcal{D}(0) = 0$ removed
 - $\Rightarrow \mathcal{D}$ can be a hash function: *non-invertibility* and *high diffusion* achieved

$\langle \langle \rangle \rangle$

Principle of our framework

External infection but the infective value is $\Delta \mathcal{D}(E_K)$ instead of $\mathcal{D}(\Delta E_K)$

- Constraint $\mathcal{D}(0) = 0$ removed
 - $\implies \mathcal{D}$ can be a hash function: *non-invertibility* and *high diffusion* achieved
- \blacksquare R: random value seeding \mathcal{D} : non-determinism constraint fulfilled

Principle of our framework

Secure only against one fault!

Principle of our framework

Secure only against one fault!

Output =
$$E_K^{\sharp} \oplus \mathcal{D}(E_K^{\sharp}) \oplus \mathcal{D}(E_K^{\sharp})$$

= E_K^{\sharp}

A new framework

Principle of our framework

Secure only against one fault!

Output =
$$E_K^{\sharp} \oplus \mathcal{D}(E_K^{\sharp}) \oplus \mathcal{D}(E_K^{\sharp})$$

= E_K^{\sharp}

How to get secure against several faults?

A new framework

Improved construction

Improved construction

Improved construction

A new framework

Extension against 2n faults

 \blacksquare R is changed from a couple of \mathcal{D} 's to another

Scheme is **proven secure** in the paper

Attacker model

Per fault, the attacker:

Scheme is **proven secure** in the paper

Attacker model

Per fault, the attacker:

■ Can corrupt one E_K ,

Scheme is **proven secure** in the paper

Attacker model

Per fault, the attacker:

- Can corrupt one E_K ,
- Or stick at 0 one input of one XOR.

Scheme is **proven secure** in the paper

Attacker model

Per fault, the attacker:

- Can corrupt one E_K ,
- Or stick at 0 one input of one XOR.

And $\mathcal D$ is supposed:

- √ Non-invertible,
- ✓ To have a *high-diffusion* capacity.

Conclusion

- Identification of some common flaws in the propositions of the state of the art
- Proposal of a new solution taking into account our observations
- First proposal of an infective scheme allowing one to resist several-fault attacks
- Security proof of our solutions provided in the paper
- lacktriangle Open question: find the best suited $\mathcal D$ that meets the scheme's constraints